adsense analytic

Thursday, September 17, 2020

A Great Construction Cost Estimating App for Your Mobile

 Today, we will talk about the Construction Estimator Calculator, which is the best mobile software of its kind. This application is extremely valuable for civil engineers to compute their construction works. Different Civil classifications are accessible in this app. Peruse more to know more insights regarding this stunning mobile app.

Cost assessment in any task is most troublesome work. We don't realize that what will be the cost of your ideal task. Presently construction estimator is an android base application which will figure your venture cost in an exact manner.

It will compute your cost for two kind of building, one is for enormous structure and one for little house and so on. Principle highlight are Compute slap, steps, Beam, Column, dividers, floor and mortar and so forth.

This construction estimator produces exact outcome. construction estimator simple to utilize. construction estimator light weighted, keen estimator is all around planned and easy to use.

This app extraordinarily created for Civil engineer yet any one can utilize it. The construction Estimator encourages you figure the cost to fabricate your new building, garage, Home Or any Type Construction. Simply select the sort of your construction and afterward enter the necessary fields.

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Wednesday, September 16, 2020

Vancouver's Broadway SkyTrain Extension Project Set to Begin Soon

 The development on Broadway SkyTrain project to start this fall. as British Columbia government intends to have development to Arbutus Street in administration by 2025. The territory has affirmed that development on the Broadway tram project, which will expand a current SkyTrain line from East Vancouver to the Arbutus neighborhood, is set to proceed this fall as trusted regardless of the pandemic.

B.C. Head John Horgan said Thursday development will start inside months, with the objective of having the new line in administration by 2025. The beginning date and fruition deadline were declared over a year back. Thursday's declaration affirms the project will continue notwithstanding COVID-19.

"We are beginning the Broadway tram. This is simply thoroughly astonishing ... this is quite turning out. It's such an incredible thing and I'm so amped up for it," said Vancouver Mayor Kennedy Stewart. The project will expand the Millennium Line by 5.7 kilometers from VCC-Clark Station to the crossing point of Broadway and Arbutus Street on the city's West Side, with six new stations en route.

Horgan said Thursday the $1.73-billion agreement to plan and manufacture the line has been granted to the Broadway Subway Project Corp., an Acciona-Ghella joint endeavor. The leader of the B.C. Fast Transit Company, Michel Ladrak, said the new SkyTrain line will lighten pressure on the current 99B transport line.

He said the Broadway augmentation will have the option to convey multiple occasions the quantity of travelers than the transport, which is as of now the busiest transport course in Canada and the United States with 57,000 boardings per day.









~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Tuesday, September 15, 2020

The Water-Cement Ratio in Concrete

 Water cement ratio of concrete can be characterized as the ratio of the volume of water to the volume of cement utilized in a concrete mix. Water has an extraordinary function in the strength and functionality of concrete. After loads of investigations it has been discovered that for a particular extent of materials in a concrete mix, there is a sure measure of water that invigorates greatest.

The most significant factor deciding the strength of concrete is the water to cement ratio. It is the ratio of weight of mixing water (free water accessible for the response with cement) to that of cement in the mixture. Cement needs water of about 38% by weight for complete hydration. However, since the total hydration is a drawn-out cycle, and under useful conditions, the time of concrete mixing and projecting being short, the cement joins with just 23% of water.

On the off chance that solitary 23% of water is included while mixing, the concrete won't be serviceable in light of the fact that the water-cement ratio of 0.23 will be excessively less. So extra water will be required for functionality.

This water in overabundance of 23% by weight will dissipate on drying of concrete, making voids in it because of catching of air bubbles internal parts, subsequently decreasing the strength of concrete.

Expecting full compaction, and at a given age and ordinary temperature, strength of concrete can be taken to be conversely corresponding to the water-cement ratio. This is supposed the Abrams' law.

Water Cement Ratio Formula:

Water Cement Ratio Formula is utilized to ascertain Strength of concrete.

~~~~~~~~~~~~~~~~~~~~~~~~

Published By

Rajib Dey

www.constructioncost.co

~~~~~~~~~~~~~~~~~~~~~~~~

Wednesday, September 9, 2020

Steel Structures – Failures You Should Know About

 Steel is one of the famous construction materials close to concrete in the construction business. The high strength and flexibility are the essential properties of steel that make its place in practically all the renowned high rises far and wide.

Steel structures are created by singular steel individuals, welded or darted together to get a last unit. The slim individuals and joints are the basic focuses on a steel structure that must be intended for basic worries with most extreme consideration. Any variety or error can bring about auxiliary failures of the steel structure, which changes with the sort of burden acting and the kind of structure.

The article clarifies the basic failure methods of steel structures.

Types of Failures in Steel Structures:

The significant sorts of failures saw in a steel structure are:

1. Compression Failure
2. Tension Failure
3. Flexure Failure
4. Shear Failure

Compression Failure

While considering a steel structure, the individuals that are exposed to compression are columns and supports. At the point when the compression load following up on the pivot of the part is high (higher than the heap for which it was structured), it brings about compression failure or clasping of the part.

The plan of the column structure includes the assurance of a parameter called the thinness proportion. The slimness proportion is characterized as the proportion of the cross-sectional zone of the basic component to the length of the part. This parameter impacts locking in structures—higher the thinness proportion of the allowed part more to clasp.

Steel Structures – Failures You Should Know About

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Tuesday, September 8, 2020

Types of Drawings used in House Construction Industry

 Various sorts of drawings are utilized in development, for example, architectural drawings, auxiliary, electrical, plumbing and finishing drawings. These drawings give design plans and subtleties to development of every single piece of the structure.

Drawings assumes a significant job in the development field to pass on the philosophies and viewpoint of the architect to the layman at site.

The drawings might be utilized to show the general appearance, inside or outside the structure, or they might be utilized to demonstrate exact estimations and different subtleties for development.

Kinds of Construction Drawings:

There are diverse kind of drawing utilized for the development cycle. Contingent on the reason they serve, development drawings are separated into 5 types, with their own divisions. Each of them are briefly described below.

1. Architectural Drawing: Architectural drawing can be named as the mother drawing for the various drawings utilized for development. It contains all the subtleties of the undertaking, for example, area site plan, setting out plan, elevations, areas and different subtleties.

1.1 Site Plan: This is essential drawing utilized for stamping out the plan on the ground. It describes the area, direction and data about the site's geography, arranging utilities, and site work.

1.2 Working Plan: This drawing gives the data of level components of the structure, thickness of dividers, clear spaces inside the structure and column areas. it likewise shows the openings required in the structure, for example, entryways, windows and ventilators.

1.3 Section Drawings: Area drawings describes the material of development to be utilized, statures and estimation of the various parts of structures, sort of auxiliary segments, for example, kind of slab, and so forth. It describes the drawing when the structure is sliced through a vertical plane.

1.4 Elevation Drawing: Elevation drawing describes the data of openings, size and state of outer surface, stature of building and finish of the structure after culmination. These drawings are made by having a tasteful perspective on the structure.

Types of Drawings used in House Construction Industry

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Monday, September 7, 2020

Drilling into Rocks

 Drilling, otherwise called boring, is handily done by utilizing specific gear called rock drills. Rock is one of the hardest substances to drill into. It is also a material that is highly usable for many purposes. If you have a rock, or something made of rock that you want holes drilled into, you do not need to call a professional mason to do the job for you. If you have the right tools, you can do the job yourself for far less.
A rock drill is a drilling device designed specifically for penetrating rock, for use in activities like digging wells, preparing foundations, and mineral exploration. A number of companies manufacture rock drills, often offering a lineup of several models to meet various needs. This equipment tends to be expensive and special training is required to use it. Drills can be leased, and operators can be hired by companies that do not have a full time need for a rock drill and operator.
Drilling through rock presents a challenge because the substrate is very hard. Ordinary drills can be damaged quickly. Rock drills feature especially hard bits made with materials like industrial diamonds, along with lubrication and cooling systems to limit stress caused by friction. The drill can also use an air blower to clear out the drilling hole as the drill penetrates, limiting damage to the drill caused by rock dust and other particulate materials.
Rock drills can be attached to drilling rigs for jobs when it's necessary to drill very deeply. They can also be manually controlled by an operator, in the form of a pneumatic rock drill with a throttle. In both cases, people must wear appropriate eye, ear, and facial protection when working around the drill. These drills are noisy, and inhaling rock dust or getting it in the eyes can be very uncomfortable. Drilling teams and personnel in the area usually wear facial screens and ear plugs to limit injuries associated with their work.
Drilling into Rocks

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Thursday, September 3, 2020

Details guidelines on RCC Staircase Design

 RCC or reinforced concrete structures comprise of various building elements like Footings, Columns, Beams, Slabs, Staircase etc.

These elements are reinforced with steel to increase the strength of the structure. Staircase is considered as one such vital element in a RCC structure.

Given below, the details on several types of staircases and how the design is created for the dog-legged reinforced cement concrete staircase.

Stairs: There are lots of steps in a stair which are organized in a series to provide entry to various floors of a building. As a stair is the only medium for making communication among different floors of a building, the position of the stair should be perfect.

In a residential building, the staircase should remain adjacent to the main entrance.

In a public building, the stairs should be constructed from the main entrance itself and situated centrally, to give rapid entry to the main apartments.

There should be adequate lighting and suitable ventilation for all staircases.

Different types of Staircases - a. Straight stairs, b. Dog-legged stairs, c. Open newel stair and d. Geometrical stair

RCC Dog-legged Staircase design: In this type of staircase, the subsequent flights mount in opposite directions. The two flights in plan are not detached with a well. A landing is arranged in accordance with the level at which the direction of the flight varies.

Method for Dog-legged Staircase design: Depending on the direction along which a stair slab extents, the stairs are categorized into the following two types.

1. Stairs extending to the horizontal direction
2. Stairs extending to the vertical direction

Details guidelines on RCC Staircase Design

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Wednesday, September 2, 2020

Common thumb rules for civil engineering works

 Thumb Rules is very important for any civil engineer, Site engineer or civil supervisor to obtain instant decisions on the construction site. By applying thumb, the engineers can get the solution with a simple mathematical formula and take proper decisions wherever required. Before applying these thumb rules, it should be kept in mind that the thumb rule can only provide fairly accurate results never the correct results.

The following types of thumb rules for civil engineers are commonly used in construction work :-

Thumb rule for measuring the Concrete Volume relating to the area:
The volume of concrete necessary = 0.038 m3/square feet area.

As for instance, if Plan Area = 40 x 20 = 800 Sq. m., total necessary volume of concrete will be as follow :-
= 800 x 0.038m3 = 30.4m3

Thumb rule for Steel quantity necessary for Slab, Beams, Footings & Columns:
Essential quantity of steel in residential buildings = 4.5 Kgs – 4.75 Kgs / Sq. Ft.
Essential quantity of steel in commercial buildings = 5.0 Kgs-5.50 Kgs/Sq. Ft.

Thumb Rules For Civil Engineers recommended by B N Datta for the Steel quantity that will be applied for several members of the building :-

Proportions of Steel in Structural Members:

1) Slab – 1% of the total volume of concrete
2) Beam – 2% of the total volume of concrete
3) Column – 2.5% of total volume of concrete
4) Footings – 0.8% of the total volume of concrete

Common thumb rules for civil engineering works

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Tuesday, September 1, 2020

Some important thumb rules for making the layout of any Column

 Guidelines to be followed for making A column layout is created on the basis of the following directions :-

The design of columns should be made with regard to the total forces operating on the structure. In order to avoid errors, there are some important thumb rules which should be followed by every Civil engineer and Architect.

The following three thumb rules should be followed:

1. Size of the Columns
2. Spaces among Columns
3. Alignment of columns

Minimum Size of RCC columns: The size of the columns is based on the total loads operating on the columns which range from axial loads and lateral loads. Large beam spans cause bending moment in the beams as well as in columns which are drawn by the stresses in the beams.

To apply this general thumb rule, presume a structure of G+1 floors high, with standard 6? walls. Least size of an RCC column should not be under 9? x 12? (225mm x 300mm) with 4 bars of 12 MM Fe415 Steel.

The dimension of the column should be 9? x 12? (225 mm x 300mm) with 6 bars of 12 MM Fe500 steel. It is recommended to utilize M20 grade concrete for the structure (ratio 1 part Cement : 1.5 parts Sand : 3 parts Aggregate with 0.5 parts water by volume). It is also suggested to utilize 8 MM stirrups at a span of 150 MM center to center all through the length of column.

This setup of 9? x 12? RCC columns is secured for G+1 Floors.

Spaces (distance) among two columns: To install the above column, a distance of up to 5 meters should be maintained. It is suggested to apply beams of size 9? X 12? (225 MM x 300MM) having a slab thickness of 5? (125 MM) cast in M20 concrete for spans up to 5m. Some other factors like secondary and tertiary spans, point loads and wall loads which should also be taken into consideration. The thumb rules can be useful when the structure is simple.

Some important thumb rules for making the layout of any Column

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Basics of Cement Concrete for beginners

 Numerous individuals imagine that cement and concrete are a similar item – they are definitely not. Cement is a dry powdered synthetic that, when blended in with water, gradually responds to shape another hard, strong compound. Then again, concrete is a blend of cement mixed with water and different sizes of aggregates. The cement and water structure a glue that sticks the aggregates together when it solidifies.

Concrete, in its newly blended state, is a plastic serviceable blend that can be framed into practically any alluring shape. It starts to gradually harden when blended, yet stays plastic and serviceable for a few hours. This is a long enough period to permit it to be put and wrapped up. After it takes its underlying set, it keeps on picking up quality for a considerable length of time and some of the time years if dampness keeps on being available.

Concrete has two parts; aggregate and glue. Aggregates for the most part are of two sizes; fine and coarse. Fine aggregates are those with molecule sizes littler than about 5mm, generally known as sand, which can be common or fabricated. Coarse aggregates are those with molecule sizes more prominent than about 5mm. Rock, squashed stone and impact heater slag are among the most regularly utilized coarse aggregates.

Glue is made out of cement, fly ash, water and now and then entrained air. The cementing property of the glue results from a synthetic response between the cement and water. This response is called hydration. It is a response that requires time and good states of temperature and dampness.

Curing is the giving of great temperature and dampness conditions over some undefined time frame sufficiently long to permit the hydration procedure to move toward culmination. With appropriate curing, hydration happens quickly from the outset, and afterward diminishes gradually for quite a while. This permits the concrete to grow great quality and strength. Keep in mind, concrete needs proceeded with dampness to solidify appropriately. It ought not dry out excessively fast.

The compressive quality of concrete, estimated by how much power is required to squash it, is significant in the plan of structures. In asphalts and different sections on ground, the structure is normally founded on flexural quality, (i.e; how much power the concrete can withstand in twisting before it breaks). In either case, the chief variables influencing quality are the water-cement proportion and the degree to which hydration has advanced.

Basics of Cement Concrete for beginners

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Friday, August 28, 2020

Basic differences among RC slab and RB slab

 RC Slab: RC Slab stands for a horizontal structural component of steel reinforced concrete. Generally, the thickness of RC slab varies from 100mm to 500mm. RC Slabs are frequently applied as floorings, ceilings etc. Slabs are supported on two sides only or contain beams on all four sides.

RC slabs are erected with formwork, that is generally created with wooden planks, boards, plastic & steel. In recent times, prefabricated RC slabs are also utilized. RC Slab is also termed as Reinforced Concrete Slab that arranges reinforcement for retaining the strength of the structure. Straight bar and alternative cranked bars are also applied as reinforcement in the RC slabs.

RB slabs: RB slab stands for a reinforced brick slab that is suitable for floorings and ceilings. RB slab is erected with steel reinforcement arranging spacing with the bricks. The construction cost of RB slab is less with regard to RC slab.

An RC slab alias Reinforced Cement slab is found in buildings and in bridge construction. The reinforcement is provided with steel bars which are arranged with some distances according to design and based on the load the slab has to undergo.

An RB slab alias Reinforced Brick slab is ideal for roofs in buildings. It is less costly as compared to RC slabs. The reinforcement is provided with steel bars which are arranged with some distances according to design and based on the load the slab has to undergo.

The distance among the bars is occupied by bricks which are arranged on its edge. The depth of the slab remains 4.5 in. The bars are provided among the bricks in both directions. The cement-sand mortar along with least possible water quantity is used to fill up the distance among the bars.

Basic differences among RC slab and RB slab

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Thursday, August 27, 2020

The role of Site Engineer & Project Engineer in a construction project

 Site engineers and project engineers frequently work in tandem on a job performing various things. Both play important role for major projects with equally significant liabilities.

Comparing Site Engineers to Project Engineers: Both the site engineers and project engineers take diverse liabilities for accomplishment for different types of construction projects.

Site engineers have sound technical skills which can be applied for specific engineering aspects of the project. Project engineers supervise the general operation of the project. They acquire the resource orders, deal with clients, and coordinate with designers and other engineers.

Given below, the basis differences among site engineers and project engineers :-

Liabilities of Site Engineers vs. Project Engineers

Site engineers perform according to a designer's plans, engineer's specifications and city codes to execute their jobs. Conversely, the project engineers perform very intimately with management and planners in an consultative manner to produce blueprints that fulfill the objectives of the clients as well as city and state codes.

Site Engineers: The site engineers may possess an office somewhere, but in several occasions they are active at the job site ensuring specific jobs are accomplished perfectly and with adherence to code.

These engineers examine that a building's wiring is completed properly, the plumbing will not leak, or the walls will not fall. They also have to rationalize modifications to orders, redrawing alternate plans and settling technical problems instantly and within the budget.

Given below, the liabilities of a site engineer:

The role of Site Engineer & Project Engineer in a construction project

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Wednesday, August 26, 2020

Some useful tips to examine concrete formwork in job site

 The finalized inspection of concrete formwork should be examined prior to set the reinforcement bars in exact location. By implementing perfect form work, honey combing, blow holes, grout less or discoloration of concrete can be circumvented and consequently the finished surface of concrete becomes superior.

Prior to commencement of concreting work, shuttering surface should be fully cleansed and does not contain any defect/deposits in order to provide rightly straight smooth concrete surface. Shuttering surface does not contain any damage and unnecessary roughness to its surface.

While building concrete form work, the following should be examined properly.

1. Any member to be retained in position once the general dismantling is completed, should be labeled perfectly.
2. The applicable materials should be thoroughly examined in order that no incorrect items/rejects are utilized.
3. When excavations exist nearby reformatory and strengthening action should be undertaken to impact the safety of form work.
4. The quality of bearing soil should be strong and it should be arranged properly and the sole plates should bear well on the ground. Sole plates should be perfectly placed on their bearing pads or sleepers. The bearing plates of steel props should not be deformed. There should be adequate bearing areas for the steel sections on the bearing members.

5. There should be proper safety provisions to get rid of impact of traffic, scour caused by water and accidental impacts.
6. To maintain proper strength and durability of form work at intermediate stage, bracing, struts and ties should be provided together with the advancement of form work. Avoid ‘Tilting and overturning of steel sections.
7. While applying customizable steel props, no damage and evident bents should be observed; steel pins should be arranged, restricted latterly near each end.
8. Screw adjustments of adaptable props should not be over extended.

Some useful tips to examine concrete formwork in job site

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Tuesday, August 25, 2020

Details guidelines on RCC Staircase Design

 RCC or reinforced concrete structures comprise of various building elements like Footings, Columns, Beams, Slabs, Staircase etc.

These elements are reinforced with steel to increase the strength of the structure. Staircase is considered as one such vital element in a RCC structure.

Given below, the details on several types of staircases and how the design is created for the dog-legged reinforced cement concrete staircase.

Stairs: There are lots of steps in a stair which are organized in a series to provide entry to various floors of a building. As a stair is the only medium for making communication among different floors of a building, the position of the stair should be perfect.

In a residential building, the staircase should remain adjacent to the main entrance.

In a public building, the stairs should be constructed from the main entrance itself and situated centrally, to give rapid entry to the main apartments.

There should be adequate lighting and suitable ventilation for all staircases.

Different types of Staircases - a. Straight stairs, b. Dog-legged stairs, c. Open newel stair and d. Geometrical stair.

RCC Dog-legged Staircase design: In this type of staircase, the subsequent flights mount in opposite directions. The two flights in plan are not detached with a well. A landing is arranged in accordance with the level at which the direction of the flight varies.

Method for Dog-legged Staircase design: Depending on the direction along which a stair slab extents, the stairs are categorized into the following two types.

Details guidelines on RCC Staircase Design

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Monday, August 24, 2020

Types, applications and benefits of aggregates

 Aggregates are the vital components in concrete. They are granular materials obtained from the natural rocks, crushed stones as well as natural gravels and sands. The aggregates are amalgamated with a binding material in fixed ratios to form concrete.

Aggregates normally capture about 70% to 80% of the concrete volume and they significantly affect the different properties like strength, hardness and stability of the concrete. Aggregates function as fillers or volume increasing components.

Applications of aggregates:

1. They are used as an underlying material for foundations and pavements.

2. They are used as constituents in portland cement concrete & asphalt concrete.

Properties of Aggregate: Aggregate should contain the properties given below -

1. It should be chemically static that means they should not respond to cement or any other aggregate or admixture.

2. It should contain adequate hardness to avoid scratching and erosion in the hardened state.

3. It should contain adequate toughness to sustain impact and vibratory loads.

4. It should be physically strong to carry compressive and normal tensile loads in ordinary mixture.

5. It should not contain impurities, inorganic or organic in nature for which the quality of concrete will be affected significantly.

6. It should have capabilities to produce usable plastic mixture after getting mixed with cement and water.

Types, applications and benefits of aggregates

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Saturday, August 22, 2020

Step-by-step guidelines to calculate the volume of a trapezoidal footing

 Isolated footings alias pad or spread footings are mostly found in shallow foundations with the intention of conveying and distribution of concentrated loads resulting from columns or pillars. Isolated footings either comprise of reinforced or non-reinforced material. For the non-reinforced footing, the height of the footing should be larger to maintain the required spreading of load.

To apply Isolated footings, there should not be fluctuating settlements under the whole building.

Necessity of materials for Isolated Footing : The following materials will be utilized for building up a isolated footing - Shutter Material, MS Rod, Binding Wire, Cover Block and Chair, Concrete.

Shutter Material for Isolated Footing: In isolated footing, generally wooden shutter materials are utilized. Often, steel shutter materials can also be applied.

This type of footing is utilized under the following conditions : Columns are not arranged narrowly. Fewer loads enforce on footings. The safe bearing strength of the soil is usually extreme.

In this construction video tutorial, one will learn how to make calculation for finding out the volume of Trapezoidal Footing at construction site.

Trapezoidal footing is formed by combining cuboid & truncated pyramid. Cuboid may be rectangular or square in shape. A special case of footings is the trapezoidal footing that may be utilized to bear two columns of unbalanced loads when distance outside the column of the massive load is restricted.

A trapezoidal footing is applied in such a manner that the center of gravity of the footing is located under the outcome of the loads. In that order, the distribution of contact pressure will be consistent.

Step-by-step guidelines to calculate the volume of a trapezoidal footing

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Friday, August 21, 2020

Types of Leveling Methods in Surveying

 Leveling is the most generally utilized technique for getting the elevations of ground points comparative with a reference datum and is normally done as a different system to those utilized in fixing planimetric position. The fundamental idea of leveling includes the estimation of vertical separation comparative with a horizontal line of sight. Consequently, it requires a graduated staff for the vertical estimations and an instrument that gives a horizontal line of sight.

The different types of Leveling in ground survey are:

a. Precise or Geodetic Leveling
b. Ordinary or Simple Leveling

Techniques for Leveling

Techniques for leveling might be immediate, for example:

1. Simple Leveling
2. Differential Leveling
3. Profile Leveling
4. Cross Sectioning

5. Reciprocal Leveling
6. Precise leveling
7. Check Leveling
8. Fly Leveling

Or then again might be aberrant, e.g.

1. Trigonometric Leveling
2. Barometric Leveling
3. Hypsometry

Types of Leveling Methods in Surveying

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Thursday, August 20, 2020

How to estimate cement bags in 1 cubic meter

 Suppose the proportion of nominal mix is 1:2:4 (one part cement, 2 part sand and 4 part aggregate)

Wastage of cement is taken as 2%
Output of mix is provided as 67%.

For 1 cum output, the requirement of dry mix is 1/0.67 = 1.49 say 1.50 cum.
After including the wastage (2%), the output will be (1.50 + 0.02) = 1.52 cum.
Volume of cement = (cement/cement+sand+aggregate) × Total material

= (1/1+2+4) × 1.52
=0.2171 cum
The density of cement is 1440 kg/cum and
Weight of 1 bag cement = 50 kg.

So, volume of 1 bag cement = 50/1440
=0.0347 cum.
No. of cement bags essential in 1 cubic meter = 0.2171/0.0347
= 6.25 bags.
The above formula can be utilized for measuring cement for other nominal mixes.

To get more details, watch the following video tutorial.

How to estimate cement bags in 1 cubic meter

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Wednesday, August 19, 2020

Some important points for civil site engineer

 Civil engineer accomplishes several tasks at construction site. Given below, some points, tips and tricks essential for a civil engineer for doing rapid calculations and providing instant solutions to construction site problems.

Given below, some general points which civil site engineers should focus on to simplify the construction work whereas retaining the quality of construction.

Lapping should not be provided for the bars with diameters in excess of 36 mm.

Highest spacing for chair should be 1.00 m (or) 1 No per 1m2.
For dowels rod, lowest 12 mm diameter should be applied.

For Chairs, bars with minimum diameter of 12 mm should be utilized.
Longitudinal reinforcement should remain not below 0.8% and in excess of 6% of gross C/S.
Least bars for square column is 4 No’s and 6 No’s for circular column.
Main bars in the slabs should not be under 8 mm (HYSD) or 10 mm (Plain bars) and the distributors should not be under 8 mm and not in excess of 1/8 of slab thickness.

Least thickness of slab should be 125 mm.
Dimension tolerance for cubes should be + 2 mm.
Free fall of concrete is permissible maximum to 1.50m.
Lap slices should not be applied for bar greater than 36 mm.
Water absorption of bricks should not be in excess of 15 %.
PH value of the water should not be under 6.

Some important points for civil site engineer

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Tuesday, August 18, 2020

Stirrups in a Concrete Beam

 As engineers, we plan fortified concrete members and frequently we are approached to watch the steel reinforcement in field before the concrete is set. We must ensure the concrete establishments, beams, segments, and so forth are fabricated the manner in which they were structured. During our perceptions we regularly find that steel beam stirrups, utilized in fortified concrete plan, are not introduced accurately and it isn't in every case clear to the installer why they are significant.

Truly, beam stirrups had been utilized sparingly in private development. In any case, as of late concrete beam sizes have gotten shallower and ranges have expanded. We would say, this has been the aftereffect of structural plan and building tenant prerequisites. The expanded expense of establishment components, for example, bored docks, has additionally been a factor. Expanding concrete beam ranges, to lessen the requirement for extra wharfs, has brought about the requirement for the utilization of steel stirrups.

Usage of Stirrups

Concrete beams shift inside and out. The more profound the beam, the more shear limit. At the point when the profundity isn't satisfactory, steel stirrups must be added to expand the shear limit of the beam. These stirrups are normally one bit of steel that is twisted into a rectangular shape. Regularly little distance across steel is utilized, for example, #3 and #4 rebar. The stirrup normally folds over the base and top bars of the beams.

A planner ought to determine the size, dispersing and area along the length of the beam where the stirrups are required. We like to indicate the stirrup measurements in our areas, with the goal that the stirrup can be made before establishment. Stirrups will be required at zones of high shear, for example, bearing focuses and beneath huge point loads.

The installer ought to be mindful so as to manufacture the stirrup from one bit of steel and sufficiently cover each end (contact the Structural Engineer or allude to the ACI code for varieties). Again and again, the stirrup isn't pre-manufactured and the installer attempts make the stirrup in the field, after the flat bars are as of now set up.

This is normally self-evident, in light of the fact that the stirrup is built from two pieces with insufficient lap join. It is a lot simpler and effective to introduce a stirrup simultaneously the even reinforcement is being introduced. Continuously contact the Structural Engineer with any inquiries concerning size, shape, separating and establishment of stirrups preceding assessment. This will help forestall a minute ago changes, while the concrete truck is pausing.

Stirrups are closed circle bars tied at normal stretches in beam reinforcement to hold the bars in position. Sidelong ties are utilized to hold the situation of the reinforcement in a segment without upsetting the concrete space.

Stirrups in a Concrete Beam

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Monday, August 17, 2020

Some useful tips to work out the length of the bent bars

 While fabricating reinforcing bars with bends, the straight bar is primarily cut to a length that is under the sum of the specified dimensions of the bent bar.

The variation among the detailed length and the cut length belongs to the “bend curvature deduction” and called as various names like gain, creep, and gyp. Usually, the fabricators and programmers get the bend curvature deduction from a bend deduction table.

In the following table 1, the deductions for 45- and 90-degree bends of common bar sizes are provided.

Figure 1 illustrates a No. 8 (No. 25) bar with a standard hook and sides estimating 1 ft 4 in. and 4 ft (400 and 1220 mm). The detailed length of this bar is obtained by summing up the two sides, or 5 ft 4 in. (1620 mm). From Table 1, the deduction for a 90-degree bend on a No. 8 (No. 25) bar is 2-1/2 in. (65 mm). So, in such a case, the cut length of the bar should be 5 ft 1-1/2 in. (1555 mm).

The usual standard for working out the cut length of a bar is along the actual centerline of the bar, that is equivalent to the neutral axis of the bar cross section before bending. The cut length of a bent bar is less than the sum of the finished dimensions due to the following reasons :-

with a easy-to-follow mathematical calculation.

If the exterior fibers of the bar are elongated easily, the inner fibers of the bar are constrained by friction against the bending mandrel, so, the neutral axis shifts inward approaching the mandrel. It is critical to measure this component. The inconsistency arises from computing the lengths on the basis of the actual centerline is not very important.

Some useful tips to work out the length of the bent bars

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

What are the maximum bearing capacity of various types of soil

 In this construction video tutorial, one will be familiar with how to determine maximum bearing capacity of various types of soil.

Safe Bearing Capacity of Soils is defined as the maximum strength of loading that the soil will bear securely devoid of the risk associated with shear failure.

The bearing capacity of soil refers to the maximum average contact pressure among the foundation and the soil which should not lead to shear failure in the soil.

In the jobsite you will be provided with drawings along with soil investigation report. From soil investigation report, you can get various information about the soil upon which the building will be constructed like number of fillings in the soil, the bearing capacity of soil, bearing pressure of soil to undergo.

There may be some errors in the report or higher value for bearing capacity.

In this video, you will learn how to find out maximum bearing capacity of soil and tally this figure with the soil test report to check for any discrepancy.

In the video, there are two heads like soil type and safe bearing capacity of soil. In soil type, there are different types of soil like combination of soft, wet and muddy clay, fine/loose or dry sand, soft clay, black cotton soil, moist or sand clay mix, loose gravels, compacted gravels, soft rock, sand or lime stone, hard rock/granite/trap etc. For each type of soil, the maximum safe bearing capacity is provided.

What are the maximum bearing capacity of various types of soil

~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~

Thursday, August 13, 2020

Some useful tips to measure loads on column, beam and slab

 In order to work out the total load on columns, Beam and Slab, there should be clear ideas on the types of loads enforcing on the column.

Different Loads operating on Column:

1) Column Self Weight X Number of floors
2) Beams Self Weight per running meter
3) Load of walls per running meter
4) Total load on Slab (Dead load + Live load + Self weight)

Apart from above loading, the columns are also susceptible to bending moments which should be taken into consideration in the final design.

For Colomn: The Self weight of Concrete remains approx 2400 kg/m3, that is similar to 240 kN and self weight of steel is approx 8000 kg/m3.

Therefore, if we consider a column size of 230 mm x 600 mm with 1% steel and 3 meters standard height, the self weight of column is approx 1000 kg per floor that is equivalent to 10 kN.

At the time of making calculation, self weight of columns is taken as 10 to 15 kN per floor.

For Beam: Similar method is also used for making calculations of beam. Suppose, each meter of beam contains dimensions of 230 mm x 450 mm without slab thickness. Therefore, the self weight should be approx 2.5 kN per running meter.

For Walls: The Density of bricks differs among 1500 to 2000 kg per cubic meter. For a brick wall with thickness 6 inch, height 3 meter a length 1 meter. The load / running meter should be equivalent to 0.150 x 1 x 3 x 2000 = 900 kg, that is identical to 9 kN/meter. This method is useful for working out the load of brick per running meter for any brick type.

Some useful tips to measure loads on column, beam and slab

~~~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~~~

Wednesday, August 12, 2020

How to Test the Consistency of Cement

 Definition: The standard consistency of cement paste is the level of water required, where the plunger infiltrates into the cement paste of about 5mm to 7mm from the base of the shape and in the other word consistency of cement is the base measure of water required to start a synthetic response among water and cement to frame a paste.

A Minimum quantity of water required to initiate the chemical reaction between water and cement to form a paste is known as consistency of cement. The cement consistency which will allow the Vicat plunger to penetrate to 5-7 mm point from the bottom of Vicat mould is known as standard consistency. For reference purposes, the standard consistency of a Portland cement fluctuates between 25–35%.

Significance: We as a whole realize that the strength of concrete relies upon the quality Cement. To get the necessary cement strength, we need to include the perfect measure of water. Water underneath standard security won't start the concoction response among water and cement, which will build the strength of cement.

Water less than the standard consistency would not initiate the chemical reaction between water and cement resulting in the strength of cement. Water more than the consistency results in excess water and strength reduction. That’s why it is important to know the standard consistency of cement material. On the other hand, overabundance of water over steadiness brings about abundance moisture and loss of strength. In this manner it is essential to know the standard consistency of cement.

Different tests on cement:

1. Fineness test of Cement by dry sieving method with 90 micron strainer
2. Adequacy test of cement by Le Chatelier

Reasons for the Test: We know that the cement we used on our site is mostly affected by the following

1. Weather Conditions.
2. Excessive combination of Silica. One of the cement ingredients which determines the initial and final setting time of cement paste.
3. The fineness of cement.
4. Manufacturing Defects.

By Standardising the consistency of cement, we know how much water is required to produce an effective cement which will eventually produce good quality concrete. Standard Consistency of an ordinary Portland cement varies between 25-35%. That means we need 25% of water in volume to make a standard consistency of cement.

For Example, If we need to calculate the amount of water required for a 200 g of cement which has 30% consistency means then we need 200*30% = 60g water to prepare a standard consistency. This is what we are going to find in this test.

How to Test the Consistency of Cement

~~~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~~~

Tuesday, August 11, 2020

Standard 2BHK Flat RCC Design And Calculation

 Today, let us design an average plan of a general 2BHK apartment. What's more, we should just take dead and live loads. Include wind loads and seismic loads as indicated by zone in the wake of rehearsing with dead and live load.

The thought is basic – Slab lays on beams. Beams lay on columns and Columns lay on footings. So design slab first, at that point utilize the load from load to design beams. Beams will put load on columns. Also, columns on footings.

Essentials:

Architectural drawing
IS codes – 456, 875 (I and II)
Soil report
Logical mini-computer (A scientific calculator will suffice)
MS Excel – for quicker counts. Many design workplaces use Excel format sheets. Try not to consider them to be designing programming. They are only for quicker computations and limit blunders.

We should begin the RCC design and calculations now.

Design Plan:

1. Imprint columns.
2. Join columns to check essential beams. There will be tertiary beams laying on essential beams.
3. Imprint all beams. Number them.
4. Presently mark slabs. Slabs with comparative measurements will be denoted the equivalent.
5. Design slabs. Use loads from IS:875 section 2, call it 'w'. Discover the depth and territory of steel. We'll do enumerating later.
6. Presently beams will be determined each separately. To begin with, how about we figure for tertiary beams, i.e beams laying on different beams. Accept, the depth and width of all beams are 500 mm and 300 mm individually. Draw power dia for each beam.

Standard 2BHK Flat RCC Design And Calculation

~~~~~~~~~~~~~~~~~~~~~~~~~~
Published By
Rajib Dey
www.constructioncost.co
~~~~~~~~~~~~~~~~~~~~~~~~~~